Best Azure Data Engineering Full Stack Course in Hyderabad | Top Training Program

An Azure Data Engineering full-stack role encompasses the entire data lifecycle within the Azure ecosystem, from data ingestion to analysis and reporting. These engineers are responsible for designing, implementing, and maintaining data pipelines, data warehouses, and data lake solutions using a variety of Azure services. They also handle tasks like data transformation, security, and performance optimization.
Responsibilities:

Data Ingestion and Extraction:

Bringing data from various sources (structured, unstructured, real-time) into Azure.

Data Transformation and Cleaning:

Ensuring data quality and consistency through cleaning, transformation, and integration processes.

Data Storage:

Designing and implementing data storage solutions, including Azure Blob Storage, Azure Data Lake Storage, and Azure SQL Database.

Data Warehousing:

Building and maintaining data warehouses using Azure Synapse Analytics.

Data Pipeline Development:

Creating and managing automated data pipelines for efficient data movement and processing using Azure Data Factory or Azure Databricks.

Data Security and Compliance:

Implementing security measures (encryption, access control) and ensuring compliance with data privacy laws.

Performance Monitoring and Optimization:

Identifying and resolving performance bottlenecks in data systems.

Collaboration:

Working with data scientists, analysts, and business stakeholders to understand their needs and implement appropriate data solutions.

Azure Data Engineering Full Stack Course Curriculum


                                 Azure Databricks

Day 1:


What is Big Data Analytics

Data Analytics Platform

  • Storage

  • Compute


Data Processing Paradigms

  • Monolithic Computing

  • Distributed Computing


Day 2:


Distributed Computing Frameworks

  • Hadoop MapReduce

  • Apache Spark


Big Data Analytics : Data Lakes

  • Tightly Coupled Data Lake

  • Looseky Coupled Data Lake


Day 3:


Big Data File Formats

  • Row Storage Format

  • Columnar Storage Format


Scalability

  • Scale - Up (Vertical Scalability)

  • Scale - Out (Horizontal Scalability)


Day 4: Intruduction To Azure Databricks



  • Core Databricks Concepts

    • Workspace

    • Notebooks

    • Library

    • Folder

    • Repos

    • Data

    • Compute

    • Workflows




Day 5: Introducing Spark Fundamentals



  • What is Apache Spark

  • Why Choose Apache Spark

  • What are the Spark use cases


Day 6: Spark Architecture



  • Spark Components

    • Spark Driver

    • SparkSession

    • Cluster manager

    • Spark Executors




Day 7: Create Databricks Workspace



  • Workspace Assets


Day 8: Creating Spark Cluster



  • All-Purpose Cluster

    • Single Node Cluster

    • Multi Node Cluster




Day 9: Databricks - Internal Storage



Day 10: DBUTILS Module



  • Interaction with DBFS

  • %fs Magic Command


Day 11: Spark Data API's



  • RDD (Resilient Distributed Dataset)

  • DataFrame

  • Dataset


Day 12: Create Data Frame



  • Using Python Collection

  • Converting RDD to DataFrame


Day 13: Reading CSV data with Apache Spark



  • Inferred Schema

  • Explicit Schema

  • Parsing Modes


Day 14: Reading JSON data with Apache Spark



  • SingleLine JSON

  • Multiline JSON

  • Complex JSON

  • explode() Function


Day 15: Reading XML Data with Apache Spark



  • Install Spark-xml Library

  • User Defined Schema

    • DDL String Approach

    • StructType() with StructFields()




Day 16: Reading Excel File With Apache Spark



  • Single Sheet Reading

  • Multiple Sheet Reading Using List object


Day 17: Reading Excel File With Apache Spark



  • Multiple Excel Sheets with Same Structure

  • Multiple Excel Sheets with Different Structures


Day 18: Reading parquet data With Apache Spark



  • Uploading parquet data

  • View the data DataFrame

  • view the Schema of the DataFrame

  • limitations of parquet file

  • Schema Evolution


Day 19: Introduction to Delta Lake



  • Delta Lake Features

  • Delta Lake Components


Day 20: Delta lake Features



  • DML Operations

  • Time Travel Operations


Day 21: Delta lake Features



  • Schema Validation and Enforcement

  • Schema Evolution


Day 22: Access Data from Azure Blob Storage



  • Account Access Key

  • Windows Azure Storage Blob driver (WASB)

  • Read Operations

  • Write Operation


Day 23: Access Data from Azure Data Lake Gen2



  • Azure Service Principal

  • Azure Service Principal

  • Azure Blob Filesystem driver (ABFS)

  • Read Operations

  • Write Operation


Day 24: Access Data from Azure Data Lake Gen2



  • Shared access signatures (SAS)

  • Azure Blob Filesystem driver (ABFS)

  • Read Operations

  • Write Operation


Day 25: Access Data from Azure SQL Database



  • Configure a connection to SQL server


Day 26: Access Data from Synapse Dedicated SQL Pool



  • Configure storage account access key

  • Read data from an Azure Synapse table

  • Write Data to Azure Synapse table


Day 27: Access Data from Snowflake



  • Reading Data

  • Writing Data


Day 28: Create Mount Point to Azure Cloud Storages



  • Azure Blob Storage

  • Azure Data Lake Storage


Day 29: Introduction to Spark SQL Module



  • Hive Metastore

  • Spark Catalog


Day 30: Spark SQL - Create Global Managed Tables



  • DataFrame API

  • SQL API


Day 31: Spark SQL - Create Global Un-Managed Tables



  • DataFrame API

  • SQL API


Day 32: Spark SQL_Create Views



  • Temporary Views

  • Global Temporary Views

  • DataFrame API

  • SQL API

  • Dropping Views


Day 33: Spark Batch Processing



  • Reading Batch Data

  • Writing Batch Data


Day 34: Spark Structured Streaming API



  • Reading Streaming Data

  • Write Streaming Data

  • checkPoint Location


Day 35: Spark Structured Streaming API - outputModes



  • Append

  • Complete

  • Update


Day 36: Spark Structured Streaming API_Triggers



  • Unspecified Trigger (Default Behavior)

  • trigger(availableNow = True)

  • trigger(processingTime = "n minutes")


Day 37: Spark Structured Streaming API



  • Data Processing

  • Joins

  • Aggregation


Day 38: Code Modularity of Notebooks



  • %run Magic Command


Day 39: dbutils.notebook Utility



  • run()

  • exit()


Day 40: Widgets_Types of Widgets



  • text

  • dropdown

  • multiselect

  • combobox


Day 41:Parameterization of Notebooks



  • History Load

  • Incremental Load


Day 42:Trigger Notebook from Data Factory Pipeline



  • Notebook Parameters


Day 43:Databricks Workflow



  • Orchestration of Tasks


Day 44:Databricks Workflow



  • Task Parameters

  • Job Trigger


Day 45: Delta Lake Implementation



  • SCD Type0 Dimension


Day 46:Delta Lake Implementation



  • SCD Type1 Dimension


Day 47:Delta Lake Implementation



  • SCD Type2 Dimension


Day 48:Delta Lake Implementation



  • SCD Type3 Dimension


Day 49:PySpark Performance Optimization



  • Cache()

  • Persist()


Day 50:PySpark Performance Optimization



  • repartition()

  • coalesce()


Day 51:PySpark Performance Optimization



  • Column Predicate Pushdown

  • partitionBy()


Day 52:PySpark Performance Optimization



  • bucketBy()


Day 53:PySpark Performance Optimization



  • BroadCastJoin


Day 54:Delta Lake_Performance Optimization



  • OPTIMIZE

  • ZORDER


Day 55:Delta Lake_Performance Optimization



  • Delta Cache


Day 56:Delta Lake_Performance Optimization



  • Liquid Clustering


Day 57:Delta Lake_Performance Optimization



  • Partitioning

  • Liquid Clustering


Day 58:Databricks Unity Catalog



  • Metastore

  • Catalog

  • Schema

  • Tables

  • Volumes

  • Views


Day 59:Databricks Unity Catalog



  • Managed Tables

  • External Tables


Day 60:Databricks Unity Catalog



  • Managed Volumes

  • External Volumes


Day 61:Databricks - Auto Loader



  • Auto Loader file detection modes

    • Directory Listing mode

    • File Notification mode



  • Schema Evolution with Auto Loader


Day 62:Delta Live Tables



  • Simple Declarative SQL & Python APIs

  • Automated Pipeline Creation

  • Data Quality Checks

Leave a Reply

Your email address will not be published. Required fields are marked *